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1. I¥TRODUCTION

Boundary-layer suction originally was applied to reduce the
boundary-layer thickness and therewlth the inclination to flow sepa-
ration; however, since the properties of bodies with small drag have
been improved more and more, attention was drawn to an increased extent
to the reduction of surface friction. One now strived toward keeping
the boundary layer laminar as long as possible, thus to defer the tran-~
sition point to turbulence as far as possible. Boundary-layer suction
was recognized to have a favorable effect in thls sense, and therewith
the velocity distribution in a laminar boundary layer behind a suction
point acquired heightened interest. The stabllity of a laminer velocity
profile is very severely affected by the shape of this profile.

In a considerable number of theoretical reports (reference 1) the
case of continuous suction was treated for reasdns of mathematical
slmplicity; permeability of the wall surface was assumed. In further =
reports, the stabllity of leminar boundary-layer profiles in case of
continuous suction was treated and a considerable rise in the stabillty
limit was determined; however, a technical realization of such perme- i -
able walls with sufficiently smooth surface and adequate material
strength characteristics is difficult. For structural reasons, it is
simpler to arrange single-suctlon slots. In addition to the suction
effect proper, there appears here the sink effect first discussed in _
detail by L. Prandtl and O. Schrenk (reference 2) and recently treated
by Pfenniger (reference 3) in an instructive experimental investigation.

Below, the pressure variation along the wall as well as, in partic-
ular, the sink effect are disregarded. Figure 1 shows the practical
realization of such a case. We assume that on a flat plate A, a laminar
boundary layer ("Blasius boundary layer") develops at constant pressure.
We assume a second plate B arranged beginning from a certain point x

at the distance y, parallel to the first plate so that a suction slot

*"Entwicklung einer laminaren Grenzschicht hinter elner :
Absaugestelle.” Ingenieur Archiv, Vol. 17, 1949, pp. 199-206. _ ST
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is Tormed between the two plates. The magnltude of iﬁé power require-
ment for suction is assumed to be preclsely such that “merely the part
of the boundary layer situated between the .two plates is removed. Thus,
there begins above the plate B a new lamingr bouhdary layer which is
distinguished from the Blasius boundary layér by another initial condi-
tion. The new boundary layer forms at its start the outer part of a
Blasius boundary layer. o

2. BOUNDARY~-IAYER EQUATION AND ASYMPTOTIC BEHAVIOR

By introduction of the stream function. and the total pressure, the
boundary-layer equation may be transformed by the well-known method
(reference 4) into

2 o S
og 0°g -
ox awé
where =P + g u2 and éﬁ u. We limit ourselves fo the cage that

2 oy .

the flow takes place outside of the boundary 1ayer at the veloclity
uy = const., thus to the flat plate and put furthermore

& _..§ 2(1 - q(x,¥)) + Const. . 2 (2)

or, respectively

w=uy@ - (3)

This statement has been chosen so that for lérge wavalués, qQ assunes
the value 1. Equation (1) is thereby transformed into =

3¢
ox NG

From the definition of the stream function and from equation (3), one
further obtains with q = YA/vu X '

vulr__ o (%)

r]
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In order to investigate the asymptotic behavior of the dlfferenxial
equation (3), we put for large values of

a=1-gq, with q << 1 (8)

In first approximation, one then obtains

§EK = yuq ¥ : .(9)
X a¢

This differential equation, however, is mathematically identical with
the differential equation of a nonsteady flow lndependent of x which
has been treated before (reference 5); the time + is now replaced by
the stipulated space coordinate x. It also corresponds to the well-
known heat-conduction equation. The general solution ig therefore given
by ' - —

4, (%) = %\/; qw(wt’xo) 5o ( ¥+ ¥t ) _ Q(VL ¥ - ¥t ) ayt +

VEVul(x - x ) Vul(x - XO)

" g (0,x1)2 ¥ -
0,xt) o dx? ) 10
f o AT (\/qul(x - x! ))
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Therein

z s - _
o = jiJF e~Y dy
Vad o

is the known error integral. W. Tollmien (reference 6) has investigated
this solution for two special cases where the first integral disappears.
For the boundary layer with suction, however, this will no longer be the
case,

3. BLASIUS BCUNDARY LAYER

Although we presupposed that the velocity uy at the edge of the

to be treated here nevertheless differs from the flow on a simple flat
plate ("Blasius boundary layer") by the fact that other initial condi~

tions exist; rather, the Blasius boundary layer is contained as special .

solution among the suctlon boundary layers since there “x5 = O, thus

suction point and beginning of the plete A (fig. 1) coincide. Since we
shaell make use of this special solution for the later calculation, we
shall first congider the Blaslus boundary lsyexr. It is distinguished
by the fact that q may be regarded as dependent merely on a quan-

tity 1 = ¥fy/vuyx. One then obtains from equation (4) the following
differential equation of the Blasius boundary layer =

i 0%,
) —ggg + 9 ZB =0 . - (11)
n an

The solution may be written in the following form

31/2 32/2 33/2 -
qp = Bail + al<%;> + a2<%;> +~a3<%;) e . (12)
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The constants &4 thereln have the following values

a ="i2§ a5 = 0.57627 x 10-6 ag = 3.7282 x 10712
B, == a = 3.8907 x 10~2 a. = 2.2383 x 10~33
2 ="35 6 = 3:590T 80 = 2
—_ -7 _ ’ LT —9 — , -l)-l'
g = 8 = =1.3986 %10  ayq = -0.310k x 10
990 x 15)
&), = 1.60333 x 10‘6' ag = -3.9135 x 1011 8,5 = -1.08L x 16-15

Due to the boundary condition at thg wall, one intggration constant is
zero. The second integration copnstelt is determined from the asymptotic
behavior for large velues of 7. Because of q. (¥,0) = O the first

integral in equation (10) is elimifigted. The second integral, however,
yields by partial integration, with consideration of the asymptotic
behavior of the error integral, just as in the case treated before by
W. Wuest the solution . ‘

4 ,
<) 1l - @~ (13)
QWB 7[ ; (\flwulxﬂ '

The constantgs B in equation (12) and 7 in equation (13) are deter-
mined by the fact that for large 7 values q and 0dg/on according
to equation (12) and equation (13) agree yith each other. The recalcu~

lation of the two constants yielded the following values o=

B =p0.6642 . .y =0.828
PO

\
For comparison, L. Prandtl (reference 7) givesl\the ﬂ6f10w1ng values
calculated by Blasius ang,nggyer which read, converted to the above
designations

2
B = 2 x 0.332 = 0.66k )
y = 2% 0.231 =.0.819 .

~y
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F. Riegels and J, A. Zaat give in a new report (reference 8) for vy
the following value

y = 0.342y3x = 0.857

The function q wlth first and second derivative has béen tabulated
and plotted in numerical table 1 and figure 2%.

4. ASYMPTOTIC BEHAVIOR OF THE SUCTION BOUNDARY LAYER

For calculation of the asymptotic behevior of the s@ction boundary
layer, we divide the function gq_ defined by equation (8) into two
parts

% = G T G

The first part is to be selected so that it satisfies the'inifial condi-
tion at the suction point x = xy; this is done"by extending the asymp-

totic solution of the Blasiues boundary layer to x > Xp &s well. From
equation (13) one then obtains

Ihe numerical table has been calculated with the values P = 0.664
and 7 = 0.819.

i
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Numerical Table 1.

Blasius Boundary Layer

B N a(q) at(q) at'(yn) valn)
o] 0 0.6640 0 0
.1 . 06606 .6555 12751 . 2570
.2 .13106 L6427 17750 . 3620
.3 .1939 . 6206 211k Juhoh
4 . 2546 . 5981 . 2369 . 5046
5 <3135 573k . 2561 «5599
.6 . 3695 5471 . 2700 . 6079
T 1228 .5195 2796 . 6502
.8 L4681 912 . 2856 L6842
.9 .5211 625 . 2883 7212
1.0 . 5659 L4337 . 2883 . 7523
1.1 . 6081 . ho62 . 2857 . 7798
1.2 .6L69 . 3766 . 2809 . 8043
1.3 .6831 . 3487 <2743 .8265
1.4 CTL6T ©.3217 . 2660 . 8466
1.5 < THT . 2955 . 2563 . 8645
1.6 L7758 . 2705 2457 .8807
1.7 .8017 . 2466 .2340 8954
1.8 .8252 .2238 . 2248 .9084
1.9 L8465 . 2022 . 2088 «9200
2.0 .8657 .1820 .1955 <9304
2.5 .9352 .1013 .1303 L9671
3.0. «9T15 . 0509 LOTTh .9857
3.5 .9881 L0217 .0381 . 9940
4.0 .9962 . 0085 L0169 .9981
k.5 .9988 . 0029 . 0066 . 9994
5.0 .9997 .0009 .0022 .9998

Therein = 0 forms the new wall streamline snd Vo ‘the suction
quantity. The secogd part qﬁz then must be chosen so that the bound-
ary condition g = q,(0,x) is satisfied. If the asymptotic rela-

tion g ~ 1 - q, would rigorously apply in the entire domain of the

boundary layer, there would have to be at the wall g (0,x) = 1, because

of q = O; however, the asymptotic solution deviates from the rigorous
solution if it is continued up to the wall._ Therefore qw(O,x) is an

unknown function regarding which we merely make the assumption thet it
does not become infinite. As initial condition for the.part g, o one
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further has qwz(w;xo) = 0 since qwl(w;xo) already satisfies the
initial condition - - -

¥+
G = 7|1 - OO
| \/l“’ul’_‘o~
} L

which insures the connection w;th the BlasiuS'solutiéh. The contri-
bution qW2 to the solution al#b must obey the differentisl equa- —

tion (9). In the solution (equation (10)) the first integral is elimi-
nated, because of qwg(w,xo) = 0, whereas in the second integral one _

' |

has to put

22(0:%) = 4,(0,%) - a1 (0,%) = ¢ (0,%) - 7|1 - qs(‘/“i
) hVulx

8o that the asymptotic solution reads

q, =7j1-0 ! WO +L/"x qw(o,x') - 711l -0 Yo ) ] ¥ dx! g
Vhbulx X VHVulx' ox! VhVul(x - x'o) -

By partial integration one obtains with consideration of the asymptotic
behavior of the error integral (by W. Wuest, elsewhere)

%~71-¢<¢+¢°)+ qw(o,xo)-7l-¢(—%-—) 1-@( L1 )
W-Wulx ‘/l;.vulxo m

Because of the connection with the Blasius sqiufibh, hé;éver,
qW(O,xO) = ¥, 1f the asymptotic solution is continued up to the wall,

80 that one finally obtains as the asymptotic solution for the suction
boundary layer '

qW~71-¢w+w° +7¢—L 1;¢> ; | klh)
Vv x Vv, x, JhVul(x - xb) .
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Instead of the error integrals ¢ one may for large values of V¥
again go back to the Blasius solution if one takes the asymptotic '
behavior of the latter according to equation (8) and equation (13) into
congideration

vu; x thulxo VVul(x - xo)

In this formula 4p represents the Blasius solution. The last form of

the solution proves to be particularly expedient for the further con-
giderations.

5. APPROXTMATE SOIUTION FOR THE SUCTION BOUNDARY LAYER

It suggests itself to generalize the asymptotlic solution which is
valid for large values of V¥ in the following manner

(16)

_ o [Pt Y ¥
q r—> 2|~ o)

Due to g =0 for ¥ = O and because of equation (15) the func-
tion F(¥,x) must satisfy the following conditions

¥ ¥
F(O;x) = qB(/____O_—__) F(co,'x) = ___Q__> (17)
Vg Vo %,

It was hoped at first that one could choose for F, as in the nonsteady
analogue by W. Wuest, elsevhere correspondingly sn exponential func-
tion as the simplest formulation; besides equation (17) the disappear-
ance of the second derivative of q &at the wall would be added as a
further condition; however, it was shown that such a formulation does
not meet with success and even, in a certain domain, does not yield any
solution at all,
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For the further calculation we intfoduce the following simplified
notation o

w:q \lf =n'
VVulx VVul(x - XOS Vug X

so that the solution (equation (16)) reads

a4 = qy(n) - F[(l - qﬁ(n')jl -. (19)

According to a suggestlion by A. Betz, we equate as fif?t approxli-
mation 9 the function F +to the value dependent only on x

¥, X - _
S =ny A=ng+ xxon' (18)

Fo(x) = F(0,x) = Q.B< vo > = Q.B(Tlo) (20}

wvulx

at the wall. "Thus the flrast approximstion reads

@ = a0 - Fo[(1 - g5n))] | (21)

This formulation does not fulfill the boundaiy—layer equation (k) exactly.
In particular, the second derivative of Q "8t the wall does not disap-

pear; however, the dependency on the second derivative of the stability
of the veloclty profile is of a very sensitive nature go that one has to
look for a more accurate solution. By substitution of the approximate
solution (equation (21)) into the boundary-layer equation (4), one
obtaing

2
) €

X - 2
NESTCHER SIS

Hence there results stl/én'e as the error of this firet approxl-

mation., By subtraction of the exact solution .in which F stands
for Fy and q for ql, while 61 disappears, one then obtains

rm
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2 525
2 {(F-F (n?) r 2 (22)
B-q 0)[ 93 anz
where

Lo e - 2 ol - ]

tt  gisappears for 1

ig en unknown function. The quantlty 6o t =0

and "'q' = % By integration.of equetion (22) one obtains

(23)

(F - Fo)[é - QB(H'E] =€y + 6 |

Therein 67 1s to be determined grephically or pumerically by repeated

quadrature

T .
AT (2
Bnl

yrmine the asymptotic behavior of 6o by gubstituting in the

One may dete
and V— the asymptotic

above definition of 623' for ,/ql
Thereby one obtains

values ‘/qi 1 > qwl and q~1 = Qype g

et ~ (x - xo)ga;(qw - G1)

Hence follows with use of equations (9), (19), (21), and repeated inte-

gration with respect to ik W/Jvul(x - %)

e ~ 7(lF‘,o - Fo) |2 - @(ﬂé'-ﬂ (25)
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As before, ¢ denotes the error integral. Generally we visualize 4o
as represented in the following manmer -

- a'%(x)[l - a>(?;_g'—)] | (26)

=1

By way of approximation we limit ourselves to the firs% two terms,
vith a; = 7(F, - Fy) and a, determined by the fact that q must

disappear at the wall. We determine accordingly the fgnction ¥
approximately to be

F =T, + f_-_—qiﬂ'—) -el('q',x) + 7(F = Fo) |1 - ¢(’-l2-ﬂ + ayfl - ¢'(n']}

(27)

a, = -sl(O,x) - 7(F; - Fb) (28)

Calculation example;- WQA/Vu,xb = 0.125 wasg selegted as numerical
example; F was calculated for the values x/xy = 1.234, 1.562, L.3h,
and 9.78 and plotted in figure 3. For x/%y = 1.562 the error was

determined by substitutlion of the approximasted solution.into the
boundary-layer equation, and compared with the first approximation
according to equation (21). Compared to the first approximstion, a con-
siderable improvement results particularly in the reglon near the wall
(fig. 4). 1In figure 5 the results are converted to the velocity pro-
file, in figure 6 the second derivative 1s represented. As a supplement,
the connection between the degree of suction and the suction quantity of

the magnitude g % = wb/VVulxb will be supp}éﬁented. By the degree of

guction © we here understand

@=1~—2- - - (29)

81% being the displacement thickness immedlately ahead of the suction
point and B8o*% I1mmediately behind it., Therewlth @ 1s given by
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[

e =

[

13

(30)

The resulting values are tabulated in table 2 and plotted in figure 7.

Table 2. Degree of Suction

0 0.1

r

0.2

o4

0.6

0.8

1.0

2.0

0 0.392

0.520

0.671

0.762

0.824

0.870

0.97k

The suction quantity Yo is, furthermore, given by the following

relation

(31)

Yo = Va1 %ono*
6. smmAlgi

: ~
The developmen%}?f d laminar boundary leyer behind a suction point
is investigated if b the suction merely the part of the boundary layer
near the wall is "cut off", withgut the slot exerting a sink effect.

As basis of the calculation, we used the boundary-layer equation in the
form indicated by Prandtl-Mises which is.closely related to the heat
conduction equation on, respectively, to the differential equation of
the nonsteady flowfwhich is independent of the coordinate x along the
wall. With consideration of’%hégasymptbtic behavior of the solution,
an approximate solution is develope& which is similar in structure to
the solution of the nonsteady analogue which has been treated in an
earlier report by W. Wuest,.elsewhere, '

- Translated by Mary'L‘gMahler .
Neational Advisory Committee
for Aeronautics
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Figure 1.- Boundary-layer suction at the flat plate without sink effect.
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Figure 2.- The function gq(n) of the Blasius boundary layer with first and
second derivative.
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Figure 3.- Auxiliary function F(n',x) for calculation of the suction
boundary layer for V¥o/\[vux =0.125.
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Figure 4.~ Error of the first and second approximation 1_°ozc"=_x/xO = 1.562.
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Figure 5.~ Velocity profiles of the suction boundary layer for
WO/\JVulx = 0.125 &nd various distances from the suction

* point.
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Figure 6.- Second derivative of the velocity profiles of the suction
Y boundary layer for xlro / VuIx | = 0.125.
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Figure 7.- Degree of suction (ratio of the crosg ~hatched and the total

shaded area in fig. 1).
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